

 [image: _images/logo.jpeg]
 [https://github.com/kundajelab/fastISM]
fastISM Documentation

A Keras implementation for fast in-silico saturated mutagenesis (ISM) for convolution-based architectures. It speeds up ISM by 10x or more by restricting computation to those regions of each layer that are affected by a mutation in the input.

Contents:

	Quick Start
	Installation

	Usage

	Benchmark

	Getting Help

	Citation

	Examples
	Alternate Mutations

	Alternate Ranges

	Multi-input Models

	Recursively Defined Models

	Tutorial
	Installations and Data

	Init

	Load Model

	Benchmark

	Run on Custom Sequences

	Sequence Features for a Single Output

	How it Works

	Supported Layers
	Local Layers

	See Through Layers

	Aggregation Layers

	Stop Layers

	Pooling Layers

	API
	ism_base module

	fast_ism module

	fast_ism_utils module

	change_range module

	flatten_model module

	Change Log
	Unreleased

	0.5.0 - 2022-02-08

	0.4.0 - 2020-09-16

	0.3.0 - 2020-08-24

	0.2.0 - 2020-08-22

	0.1.3 - 2020-08-21

	Citation

 [image: _images/logo.jpeg] [https://github.com/kundajelab/fastISM]

[image: _images/fastism.svg] [https://pypi.org/project/fastism/] [image: _images/8790dbe09cfb3e19bf97afc80f0277f996223d70.svg] [https://fastism.readthedocs.io/en/latest/?badge=latest]

Quickstart

A Keras implementation for fast in-silico saturated mutagenesis (ISM) for convolution-based architectures. It speeds up ISM by 10x or more by restricting computation to those regions of each layer that are affected by a mutation in the input.

Installation

Currently, fastISM is available to download from PyPI. Bioconda support is expected to be added in the future. fastISM requires TensorFlow 2.3.0 or above.

pip install fastism

Usage

fastISM provides a simple interface that takes as input Keras models. For any Keras model that takes in sequence as input of dimensions (B, S, C), where

	B: batch size

	S: sequence length

	C: number of characters in vocabulary (e.g. 4 for DNA/RNA, 20 for proteins)

Perform ISM as follows:

from fastism import FastISM

fast_ism_model = FastISM(model)

for seq_batch in sequences:
 # seq_batch has dim (B, S, C)
 ism_seq_batch = fast_ism_model(seq_batch)
 # ism_seq_batch has dim (B, S, num_outputs)

fastISM does a check for correctness when the model is initialised, which may take a few seconds depending on the size of your model. This ensures that the outputs of the model match that of an unoptimised implementation. You can turn it off as FastISM(model, test_correctness=False). fastISM also supports introducing specific mutations, mutating different ranges of the input sequence, and models with multiple outputs. Check the Examples [https://fastism.readthedocs.io/en/latest/examples.html] section of the documentation for more details. An executable tutorial is available on Colab [https://colab.research.google.com/github/kundajelab/fastISM/blob/master/notebooks/colab/DeepSEA.ipynb].

Benchmark

You can estimate the speedup obtained by comparing with a naive implementation of ISM.

Test this code as is
>>> from fastism import FastISM, NaiveISM
>>> from fastism.models.basset import basset_model
>>> import tensorflow as tf
>>> import numpy as np
>>> from time import time

>>> model = basset_model(seqlen=1000)
>>> naive_ism_model = NaiveISM(model)
>>> fast_ism_model = FastISM(model)

>>> def time_ism(m, x):
 t = time()
 o = m(x)
 print(time()-t)
 return o

>>> x = tf.random.uniform((1024, 1000, 4),
 dtype=model.input.dtype)

>>> naive_out = time_ism(naive_ism_model, x)
144.013728
>>> fast_out = time_ism(fast_ism_model, x)
13.894407
>>> np.allclose(naive_out, fast_out, atol=1e-6)
True
>>> np.allclose(fast_out, naive_out, atol=1e-6)
True # np.allclose is not symmetric

See notebooks/ISMBenchmark.ipynb for benchmarking code that accounts for initial warm-up.

Getting Help

fastISM supports the most commonly used subset of Keras for biological sequence-based models. Occasionally, you may find that some of the layers used in your model are not supported by fastISM. Refer to the Supported Layers [https://fastism.readthedocs.io/en/latest/layers.html] section in Documentation for instructions on how to incorporate custom layers. In a few cases, the fastISM model may fail correctness checks, indicating there are likely some issues in the fastISM code. In such cases or any other bugs, feel free to reach out to the author by posting an Issue [https://github.com/kundajelab/fastISM/issues] on GitHub along with your architecture, and we’ll try to work out a solution!

Citation

fastISM: Performant in-silico saturation mutagenesis for convolutional neural networks; Surag Nair, Avanti Shrikumar*, Jacob Schreiber*, Anshul Kundaje (Bioinformatics 2022)
http://doi.org/10.1093/bioinformatics/btac135.

*equal contribtion

Preprint available on bioRxiv.

Examples

This section covers some of the common use cases and functionalities of fastISM.

fastISM provides a simple interface that takes as input Keras model For any Keras model that takes in sequence as input of dimensions (B, S, C), where

	B: batch size

	S: sequence length

	C: number of characters in vocabulary (e.g. 4 for DNA/RNA, 20 for proteins)

Alternate Mutations

By default, inputs at the ith position are set to zero. It is possible to specify mutations of interest by passing them to replace_with in the call to the fastISM model. To perform ISM with all possible mutations for DNA:

fast_ism_model = FastISM(model)

mutations = [[1,0,0,0],
 [0,1,0,0],
 [0,0,1,0],
 [0,0,0,1]]

for seq_batch in sequences:
 # seq_batch has dim (B, S, C)
 for m in mutations:
 ism_seq_batch = fast_ism_model(seq_batch, replace_with=m)
 # ism_seq_batch has dim (B, S, num_outputs)
 # process/store ism_seq_batch

Each ism_seq_batch has the same dimensions (B, S, num_outputs). The outputs of the model are computed on the mutations only for those positions where the base differs from the mutation. Where the base is the same as the mutation, the output is the same as for the unperturbed sequence.

Alternate Ranges

By default, mutations are introduced at every single position in the input. You can also set a list of equal-sized ranges as input instead of single positions. Consider a model that takes as input 1000 length sequences, and we wish to introduce a specific mutation of length 3 in the central 150 positions:

TODO: test this

specific mutation to introduce
mut = [[0,0,0,1],
 [0,0,0,1],
 [0,0,0,1]]

ranges where mutation should be introduced
mut_ranges = [(i,i+3) for i in range(425,575)]

fast_ism_model = FastISM(model,
 change_ranges = mut_ranges)

for seq_batch in sequences:
 ism_seq_batch = fast_ism_model(seq_batch, replace_with=mut)

Multi-input Models

fastISM supports models which have other inputs in addition to the sequence input that is perturbed. These alternate inputs are assumed to stay constant through different perturbations of the primary sequence input. Consider the model below in which an addition vector is concatenated with the flattened sequence output:

def get_model():
 rna = tf.keras.Input((100,)) # non-sequence input
 seq = tf.keras.Input((100,4))

 x = tf.keras.layers.Conv1D(20, 3)(seq)
 x = tf.keras.layers.Conv1D(20, 3)(x)
 x = tf.keras.layers.Flatten()(x)

 rna_fc = tf.keras.layers.Dense(10)(rna)

 x = tf.keras.layers.Concatenate()([x, rna_fc])
 x = tf.keras.layers.Dense(10)(x)
 x = tf.keras.layers.Dense(1)(x)
 model = tf.keras.Model(inputs=[rna,seq], outputs=x)

 return model

To inform fastISM that the second input is the primary sequence input that will be perturbed:

>>> model = get_model()
>>> fast_ism_model = FastISM(model, seq_input_idx=1)

Then to obtain the outputs:

for rna_batch, seq_batch in data_batches:
 ism_batch = fast_ism_model([rna_batch, seq_batch])

or equivalently without splitting inputs
for data_batch in data_batches
 ism_batch = fast_ism_model(data_batch)

NOTE: Currently, multi-input models in which descendants of alternate inputs interact directly with descendants of primary sequence input before a Stop Layer are not supported, i.e. a descendant of an alternate input in general should only interact with a flattened version of primary input sequence.

Recursively Defined Models

Keras allows defining models in a nested fashion. As such, recursively defined models should not pose an issue to fastISM. The example below works:

def res_block(input_shape):
 inp = tf.keras.Input(shape=input_shape)
 x = tf.keras.layers.Conv1D(20, 3, padding='same')(inp)
 x = tf.keras.layers.Add()([inp, x])
 model = tf.keras.Model(inputs=inp, outputs=x)
 return model

def fc_block(input_shape):
 inp = tf.keras.Input(shape=input_shape)
 x = tf.keras.layers.Dense(10)(inp)
 x = tf.keras.layers.Dense(1)(x)

 model = tf.keras.Model(inputs=inp, outputs=x)
 return model

def get_model():
 res = res_block(input_shape=(108,20)))
 fcs = fc_block(input_shape=(36*20,))

 inp = tf.keras.Input((108, 4))
 x = tf.keras.layers.Conv1D(20, 3, padding='same')(inp)
 x = res(x)
 x = tf.keras.layers.MaxPooling1D(3)(x)
 x = tf.keras.layers.Flatten()(x)
 x = fcs(x)

 model = tf.keras.Model(inputs=inp, outputs=x)

 return model

>>> model = get_model()
>>> fast_ism_model = FastISM(model)

[image: Open In Colab] [https://colab.research.google.com/github/kundajelab/fastISM/blob/master/notebooks/colab/DeepSEA.ipynb]

fastISM on DeepSEA Beluga

fastISM is a faster way to perform in-silico saturation mutagenesis. This tutorial uses the DeepSEA Beluga model (Zhou et al 2018 [https://www.nature.com/articles/s41588-018-0160-6]), which predicts 2002 chromatin features for a 2000 bp input sequence. This tutorial covers the following:

	Installations and downloading required files for tutorial

	Benchmarking fastISM on the Beluga model against a standard ISM implementation

	Running fastISM on custom input sequences

	Visualizing fastISM output across all tasks (outputs)

	Selecting a task, visualizing the fastISM scores, and zooming in to visualize the underlying sequence features.

Installations and Data

We use pip to install fastISM and vizsequence (to visualize sequence importance scores). In addition we download a trained Beluga model and a tsv with all the model’s outputs.

[4]:

install fastISM
!pip install fastism

Collecting fastism
 Downloading https://files.pythonhosted.org/packages/4f/93/26f83f7197d92b0c502d7f7af32cbd5e0d0f0b52a4bfb51b29162e860fc8/fastism-0.4.0-py3-none-any.whl
Requirement already satisfied: tensorflow<3.0.0,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from fastism) (2.3.0)
Collecting pydot<2.0.0,>=1.4.1
 Downloading https://files.pythonhosted.org/packages/33/d1/b1479a770f66d962f545c2101630ce1d5592d90cb4f083d38862e93d16d2/pydot-1.4.1-py2.py3-none-any.whl
Requirement already satisfied: numpy<1.19.0,>=1.16.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.18.5)
Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.12.1)
Requirement already satisfied: scipy==1.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.4.1)
Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.32.0)
Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.15.0)
Requirement already satisfied: keras-preprocessing<1.2,>=1.1.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.1.2)
Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.6.3)
Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (0.10.0)
Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (0.35.1)
Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (3.3.0)
Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (0.2.0)
Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (0.3.3)
Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (3.12.4)
Requirement already satisfied: tensorboard<3,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (2.3.0)
Requirement already satisfied: tensorflow-estimator<2.4.0,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (2.3.0)
Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (1.1.0)
Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<3.0.0,>=2.3.0->fastism) (2.10.0)
Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot<2.0.0,>=1.4.1->fastism) (2.4.7)
Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.9.2->tensorflow<3.0.0,>=2.3.0->fastism) (50.3.0)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (1.7.0)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (0.4.1)
Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (1.0.1)
Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (3.2.2)
Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (1.17.2)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (2.23.0)
Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (1.3.0)
Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (1.7.0)
Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (4.1.1)
Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3" in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (4.6)
Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (0.2.8)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (2.10)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (2020.6.20)
Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (3.1.0)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (3.1.0)
Requirement already satisfied: pyasn1>=0.1.3 in /usr/local/lib/python3.6/dist-packages (from rsa<5,>=3.1.4; python_version >= "3"->google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<3.0.0,>=2.3.0->fastism) (0.4.8)
Installing collected packages: pydot, fastism
 Found existing installation: pydot 1.3.0
 Uninstalling pydot-1.3.0:
 Successfully uninstalled pydot-1.3.0
Successfully installed fastism-0.4.0 pydot-1.4.1

[]:

#for visualizing the per-position importance
!pip install vizsequence

Collecting vizsequence
 Downloading https://files.pythonhosted.org/packages/a6/10/b3b210eba27de588fba3c261b80317413e18ac3e371df9578b3cdc61096c/vizsequence-0.1.1.0.tar.gz
Requirement already satisfied: numpy>=1.9 in /usr/local/lib/python3.6/dist-packages (from vizsequence) (1.18.5)
Requirement already satisfied: matplotlib>=2.2.2 in /usr/local/lib/python3.6/dist-packages (from vizsequence) (3.2.2)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.2.2->vizsequence) (2.4.7)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.2.2->vizsequence) (0.10.0)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.2.2->vizsequence) (2.8.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.2.2->vizsequence) (1.2.0)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from cycler>=0.10->matplotlib>=2.2.2->vizsequence) (1.15.0)
Building wheels for collected packages: vizsequence
 Building wheel for vizsequence (setup.py) ... done
 Created wheel for vizsequence: filename=vizsequence-0.1.1.0-cp36-none-any.whl size=3269 sha256=f5c7dd7708c4186bbdadb6e2e428969bec77fb97b43315a0eb60a4ddf1f6c62f
 Stored in directory: /root/.cache/pip/wheels/08/eb/de/6b398b439ba39c278e5c341bdeed57d66280910e096496eaef
Successfully built vizsequence
Installing collected packages: vizsequence
Successfully installed vizsequence-0.1.1.0

[]:

download trained model
! wget http://mitra.stanford.edu/kundaje/surag/fastISM/deepseabeluga_keras_nopermutelayer.h5 -O deepseabeluga.h5

--2020-09-20 06:25:21-- http://mitra.stanford.edu/kundaje/surag/fastISM/deepseabeluga_keras_nopermutelayer.h5
Resolving mitra.stanford.edu (mitra.stanford.edu)... 171.67.96.243
Connecting to mitra.stanford.edu (mitra.stanford.edu)|171.67.96.243|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 598186116 (570M)
Saving to: ‘deepseabeluga.h5’

deepseabeluga.h5 100%[===================>] 570.47M 48.5MB/s in 12s

2020-09-20 06:25:33 (46.9 MB/s) - ‘deepseabeluga.h5’ saved [598186116/598186116]

[]:

download output annotation
! wget https://raw.githubusercontent.com/FunctionLab/ExPecto/20b99d1278678/resources/deepsea_beluga_2002_features.tsv -O outputs.tsv

--2020-09-20 06:25:35-- https://raw.githubusercontent.com/FunctionLab/ExPecto/20b99d1278678/resources/deepsea_beluga_2002_features.tsv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 203001 (198K) [text/plain]
Saving to: ‘outputs.tsv’

outputs.tsv 100%[===================>] 198.24K --.-KB/s in 0.04s

2020-09-20 06:25:36 (5.37 MB/s) - ‘outputs.tsv’ saved [203001/203001]

Init

[]:

import fastism
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
import pandas as pd
import seaborn as sns
import vizsequence

for some seaborn warnings
import warnings; warnings.simplefilter('ignore')

import time

[]:

tf.__version__

'2.3.0'

[5]:

! pip freeze | grep fastism

fastism==0.4.0

[1]:

!nvidia-smi

Wed Sep 23 09:42:18 2020
+---+
| NVIDIA-SMI 450.66 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla P100-PCIE... Off	00000000:00:04.0 Off	0
N/A 34C P0 25W / 250W	0MiB / 16280MiB	0% Default
		ERR!
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

[]:

print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))

Num GPUs Available: 1

[]:

device = 'GPU:0' if tf.config.experimental.list_physical_devices('GPU') else '/device:CPU:0'
device

'GPU:0'

Load Model

[]:

model = tf.keras.models.load_model("deepseabeluga.h5")

WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.

[]:

model.summary()

Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv1d_1 (Conv1D) (None, 1993, 320) 10560

activation_1 (Activation) (None, 1993, 320) 0

conv1d_2 (Conv1D) (None, 1986, 320) 819520

activation_2 (Activation) (None, 1986, 320) 0

dropout_1 (Dropout) (None, 1986, 320) 0

max_pooling1d_1 (MaxPooling1 (None, 496, 320) 0

conv1d_3 (Conv1D) (None, 489, 480) 1229280

activation_3 (Activation) (None, 489, 480) 0

conv1d_4 (Conv1D) (None, 482, 480) 1843680

activation_4 (Activation) (None, 482, 480) 0

dropout_2 (Dropout) (None, 482, 480) 0

max_pooling1d_2 (MaxPooling1 (None, 120, 480) 0

conv1d_5 (Conv1D) (None, 113, 640) 2458240

activation_5 (Activation) (None, 113, 640) 0

conv1d_6 (Conv1D) (None, 106, 640) 3277440

activation_6 (Activation) (None, 106, 640) 0

flatten_1 (Flatten) (None, 67840) 0

altereddense (Dense) (None, 2003) 135885523

activation_7 (Activation) (None, 2003) 0

dense_1 (Dense) (None, 2002) 4012008

activation_8 (Activation) (None, 2002) 0
===
Total params: 149,536,251
Trainable params: 149,536,251
Non-trainable params: 0

[]:

model.input.shape

TensorShape([None, 2000, 4])

[]:

a look at the 2002 model outputs
outputs = pd.read_csv("./outputs.tsv", sep="\t")
outputs

 How fastISM Works

How fastISM Works

This section gives a high level overview of the fastISM algorithm. For more detail, check out the paper, or better still, take a look at the source code [https://github.com/kundajelab/fastISM]!

fastISM is based on the observation that neural networks spend the majority of their computation time in convolutional layers and that point mutations in the input sequence only affect limited a range of intermediate layers. As a result, most of the computation in ISM is redundant and avoiding it can result in significant speedups.

[image: _images/annotated_basset.pdf]

Consider the above annotated diagram of a Basset-like architecture (Kelley et al., 2016) [https://pubmed.ncbi.nlm.nih.gov/27197224/] on an input DNA sequence of length 1000, with a 1 base-pair mutation at position 500. Positions marked in red indicate the regions that are affected by the point mutation in the input. Positions marked in yellow, flanking the positions in red, indicate unaffected regions that contribute to the output of the next layer. Ticks at the bottom of each layer correspond to position indices. Numbers on the right in black indicate the approximate number of computations required at that layer for a naive implementation of ISM. For convolution layers, the numbers in gray and green indicate the minimal computations required.

For a single position change in the middle of the input sequence, the output of the first convolution, which has a kernel size of 19, is perturbed at 19 positions which can be computed from just 37 positions in the input. It then goes on to affect 7 out of 333 positions after the first Max Pool layer (Layer 2) and 5 out of 83 positions after the second Max Pool (Layer 3). Once the output of the final Max Pool layer is flattened and passed through a fully connected layer, all the neurons are affected by a single change in the input, and thus all subsequent computations must be recomputed entirely.

fastISM works by restricting computation in the convolution layers to only those positions that are affected by the mutation in the input. Since the most time is spent in convolution layers, fastISM avoids down a major amount of redundant computation and speeds up ISM. See API for more details on how this is achieved.

 Supported Layers

Supported Layers

This sections covers the layers that are currently supported by fastISM. fastISM supports a subset of layers in tf.keras.layers that are most commonly used for sequence-based models.

NOTE: Restrictions on layers apply only till Stop Layers, beyond which all layers are allowed.

The layers below have been classified by which positions of the output are a function of the input at the i th position.

Local Layers

For Local layers, the input at the i th position affects a fixed interval of outputs around the i th position.

Supported:
Conv1D, Cropping1D

Currently, custom Local Layers are not supported as they may require additional logic to be incorporated into the code. Please post an Issue [https://github.com/kundajelab/fastISM/issues] on GitHub to work out a solution.

See Through Layers

See through layers are layers for which the output at the i th position depends on the input at the i th position only.

Supported:
Activation, BatchNormalization, Dropout, ELU, InputLayer, LeakyReLU, PReLU, ReLU

To add a custom see-through layer:
fastism.fast_ism_utils.SEE_THROUGH_LAYERS.add("YourLayer")

Aggregation Layers

Aggregation layers are also See Through Layers as the output at the i th position depends on the input at the i th position only. The main difference is that Aggregation layers take in multiple inputs, and thus their output at the i th position depends on the i th position of all their inputs.

Supported:
Add, Average, Maximum, Minumum, Multiply, Subtract

To add a custom aggregation layer:
fastism.fast_ism_utils.AGGREGATE_LAYERS.add("YourLayer")

Stop Layers

Layers after which output at i th position depends on inputs at most or all positions in the input. However, this is not strictly true for Flatten/Reshape, but it is assumed these are followed by Dense or similar.

Supported:
Dense, Flatten, GlobalAveragePooling1D, GlobalMaxPool1D, Reshape

To add a custom stop layer:
fastism.fast_ism_utils.STOP_LAYERS.add("YourLayer")

Pooling Layers

Pooling layers are also Local Layers but are special since they are typically used to reduce the size of the input.

Supported:
AveragePooling1D, MaxPooling1D

To add a custom pooling layer:
fastism.fast_ism_utils.POOLING_LAYERS.add("YourLayer")

Custom pooling layers must have the class attributes pool_size, strides (which must be equal to pool_size), padding (which must be valid), data_format (which must be channels_last). Here is an example of a custom pooling layer.

class AttentionPooling1D(tf.keras.layers.Layer):
 # don't forget to add **kwargs
 def __init__(self, pool_size = 2, **kwargs):
 super().__init__()
 self.pool_size = pool_size

 # need for pooling layer
 self.strides = self.pool_size
 self.padding = "valid" # ensure it behaves like MaxPooling1D with valid padding
 self.data_format = "channels_last"

 def build(self, input_shape):
 _, length, num_features = input_shape
 self.w = self.add_weight(
 shape=(num_features, num_features),
 initializer="random_normal",
 trainable=True,
)

 # implement so that layer can be duplicated
 def get_config(self):
 config = super().get_config()
 config.update({
 "pool_size": self.pool_size,
 "data_format": self.data_format,
 "strides": self.strides,
 "padding": self.padding
 })
 return config

 def call(self, inputs):
 _, length, num_features = inputs.shape

 if length == None: # this can happen at when creating fast_ism_model
 return inputs # don't do anything for now

 inputs = tf.reshape(
 inputs,
 (-1, length // self.pool_size, self.pool_size, num_features))

 return tf.reduce_sum(
 inputs * tf.nn.softmax(tf.matmul(inputs, self.w), axis=-2),
 axis=-2)

Code adapted from Enformer [https://github.com/deepmind/deepmind-research/blob/master/enformer/enformer.py]. Note that pooling layers can contain weights.

 fastISM package

fastISM package

fastISM takes a Keras model as input. The main steps of fastISM are as follows:

	One-time Initialization (fastISM.fast_ism_utils.generate_models()):

	Obtain the computational graph from the model. This is done in fastISM.flatten_model.get_flattened_graph().

	Chunk the computational graph into segments that can be run as a unit. This is done in fastISM.fast_ism_utils.segment_model().

	Augment the model to create an “intermediate output model” (referred to as intout_model in the code) that returns intermediate outputs at the end of each segment for reference input sequences. This is done in fastISM.fast_ism_utils.generate_intermediate_output_model().

	Create a second “mutation propagation model” (referred to as fast_ism_model in the code) that largely resembles the original model, but incorporates as additional inputs the necessary flanking regions from outputs of the IntOut model on reference input sequences between segments. This is done in fastISM.fast_ism_utils.generate_fast_ism_model().

	For each batch of input sequences:

	Run the intout_model on the sequences (unperturbed) and cache the intermediate outputs at the end of each segment. This is done in fastISM.fast_ism.FastISM.pre_change_range_loop_prep().

	For each positional mutation:

	Introduce the mutation in the input sequences

	Run the fast_ism_model feeding as input appropriate slices of the intout_model outputs. This is done in fastISM.fast_ism.FastISM.get_ith_output().

See How fastISM Works for a more intuitive understanding of the algorithm.

ism_base module

This module contains a base ISM class, from which the NaiveISM and FastISM classes inherit. It also includes implementation of NaiveISM.

	
class fastISM.ism_base.ISMBase(model, seq_input_idx=0, change_ranges=None)

	Bases: object

	
get_ith_output(inp_batch, i, idxs_to_mutate)

	

	
pre_change_range_loop_prep(inp_batch, num_seqs)

	

	
set_perturbation(replace_with)

	

	
class fastISM.ism_base.NaiveISM(model, seq_input_idx=0, change_ranges=None)

	Bases: fastISM.ism_base.ISMBase

	
cleanup()

	

	
get_ith_output(inp_batch, i, idxs_to_mutate)

	

	
pre_change_range_loop_prep(inp_batch, num_seqs)

	

	
run_model(x)

	

fast_ism module

This module contains the FastISM class.

	
class fastISM.fast_ism.FastISM(model, seq_input_idx=0, change_ranges=None, early_stop_layers=None, test_correctness=True)

	Bases: fastISM.ism_base.ISMBase

	
cleanup()

	

	
get_ith_output(inp_batch, i, idxs_to_mutate)

	

	
pre_change_range_loop_prep(inp_batch, num_seqs)

	

	
prepare_intout_output(intout_output, num_seqs)

	

	
prepare_ith_input(padded_inputs, i, idxs_to_mutate)

	

	
run_model(inputs)

	

	
test_correctness(batch_size=10, replace_with=0, atol=1e-06)

	Verify that outputs are correct by matching with Naive ISM. Running on small
examples so as to not take too long.

Hence not comparing runtime against Naive ISM implementation, which requires
bigger inputs to offset overheads.

TODO: ensure generated data is on GPU already before calling either method (for speedup)

	
time_batch(seq_batch)

	

fast_ism_utils module

	
class fastISM.fast_ism_utils.GraphSegment(start_node, input_seqlen, input_perturbed_ranges)

	Bases: object

	
input_unperturbed_width()

	

	
output_perturbed_width()

	

	
update_forward_output(input_unperturbed_slices, input_unperturbed_padding, output_seqlen, output_perturbed_ranges)

	

	
update_num_filters(num_out_filters)

	

	
class fastISM.fast_ism_utils.SliceAssign(a_dim, b_dim)

	Bases: tensorflow.python.keras.engine.base_layer.Layer

	
call(inputs)

	GOAL: a[:,i:min(i+b.shape[1], a.shape[1])] = b
clip b if i+b.shape[1] exceeds width of a, guarantee width of output
is same as a. This could happen when a layer’s output (b) feeds into
multiple layers, but some layers don’t need all positions of b
(can happen near the edges).
See test_skip_then_mxp of test/test_simple_skip_conn_architectures.py

For Cropping1D layers, i can also be negative, which needs to be handled
separately.

	Parameters

	inputs ([type]) – [description]

	Returns

	[description]

	Return type

	[type]

	
fastISM.fast_ism_utils.compute_segment_change_ranges(model, nodes, edges, inbound_edges, node_to_segment, stop_segment_idxs, input_seqlen, input_filters, input_change_ranges, seq_input_idx)

	for each segment, given input change range compute
(ChangeRangesBase.forward_compose):

	input range of intermediate output required

	offsets for input tensor wrt intermediate output

	output seqlen

	output change range

	number of filters in output.

Starts only from sequence input that is changed. Does not deal with alternate
inputs.

Forward propagation through network one segment at a time till a segment in
stop_segments_idxs is hit. Computes the change ranges for each segment and
propagates to the next segment.

	
fastISM.fast_ism_utils.generate_fast_ism_model(model, nodes, edges, inbound_edges, outputs, node_to_segment, stop_segment_idxs, alternate_input_segment_idxs, segments)

	

	
fastISM.fast_ism_utils.generate_fast_ism_subgraph(current_node, node_edge_to_tensor, input_tensors, input_specs, nodes, edges, inbound_edges, node_to_segment, stop_segment_idxs, alternate_input_segment_idxs, segments)

	

	
fastISM.fast_ism_utils.generate_intermediate_output_model(model, nodes, edges, inbound_edges, outputs, node_to_segment, stop_segment_idxs)

	

	
fastISM.fast_ism_utils.generate_intermediate_output_subgraph(current_node, node_to_tensor, output_tensor_names, nodes, edges, inbound_edges, node_to_segment, stop_segment_idxs)

	

	
fastISM.fast_ism_utils.generate_models(model, seqlen, num_chars, seq_input_idx, change_ranges, early_stop_layers=None)

	

	
fastISM.fast_ism_utils.label_alternate_input_segment_idxs(current_node, nodes, edges, node_to_segment, stop_segment_idxs, alternate_input_segment_idxs, segment_idx)

	

	
fastISM.fast_ism_utils.label_stop_descendants(current_node, nodes, edges, node_to_segment, segment_idx)

	

	
fastISM.fast_ism_utils.process_alternate_input_node(current_node, node_edge_to_tensor, input_tensors, input_specs, nodes, edges, inbound_edges, node_to_segment, alternate_input_segment_idxs)

	

	
fastISM.fast_ism_utils.resolve_multi_input_change_ranges(input_change_ranges_list)

	For AGGREGATE_LAYERS such as Add, the different inputs have different
change ranges. For the change ranges, take the largest range over all
input ranges:

	e.g. [[(1,3), (4,6)], [(2,4), (4,5)]] -> [(1,4), (3,6)]

	input1 -^ input2 -^

	Parameters

	input_change_ranges_list – list of list of tuples. Inner lists must

have same length, where each ith tuple corresponds to ith mutation in the
input (ith input change range).
:type input_change_ranges_list: list[list[tuple]]
:return: Resolved input change ranges. All ranges must have the same width.
:rtype: list[tuple]

	
fastISM.fast_ism_utils.segment_model(model, nodes, edges, inbound_edges, seq_input_idx, early_stop_layers)

	

	
fastISM.fast_ism_utils.segment_subgraph(current_node, nodes, edges, inbound_edges, node_to_segment, stop_segment_idxs, segment_idx, num_convs_in_cur_segment)

	

	
fastISM.fast_ism_utils.update_stop_segments(current_node, nodes, edges, node_to_segment, stop_segment_idxs)

	

change_range module

	
class fastISM.change_range.ChangeRangesBase(config)

	Bases: object

Base class for layer-specific computations of which indices of the output
are changed when list of input changed indices are specified. Conversely, given
output ranges of indices that need to be produced by the layer, compute the input
ranges that will be required for the same.

In addition, given an input….

TODO: document better and with examples!

	
backward(output_select_ranges)

	

	
forward(input_seqlen, input_change_ranges)

	list of tuples. e.g. [(0,1), (1,2), (2,3)…] if single bp ISM

	
static forward_compose(change_ranges_objects_list, input_seqlen, input_change_ranges)

	

	
validate_config()

	

	
class fastISM.change_range.Conv1DChangeRanges(config)

	Bases: fastISM.change_range.ChangeRangesBase

	
backward(output_select_ranges)

	

	
forward(input_seqlen, input_change_ranges)

	list of tuples. e.g. [(0,1), (1,2), (2,3)…] if single bp ISM

	
validate_config()

	

	
class fastISM.change_range.Cropping1DChangeRanges(config)

	Bases: fastISM.change_range.ChangeRangesBase

	
backward(output_select_ranges)

	

	
forward(input_seqlen, input_change_ranges)

	list of tuples. e.g. [(0,1), (1,2), (2,3)…] if single bp ISM

	
validate_config()

	

	
class fastISM.change_range.Pooling1DChangeRanges(config)

	Bases: fastISM.change_range.ChangeRangesBase

	
backward(output_select_ranges)

	

	
forward(input_seqlen, input_change_ranges)

	list of tuples. e.g. [(0,1), (1,2), (2,3)…] if single bp ISM

	
validate_config()

	

	
fastISM.change_range.get_int_if_tuple(param, idx=0)

	

	
fastISM.change_range.not_supported_error(message)

	

flatten_model module

This module implements functions required to take an arbitrary Keras model and reduce them to a graph representation that is then manipulated by fast_ism_utils.

	
fastISM.flatten_model.get_flattened_graph(model, is_subgraph=False)

	[summary]

	Parameters

	
	model ([type]) – [description]

	is_subgraph (bool, optional) – [description], defaults to False

	Returns

	[description]

	Return type

	[type]

	
fastISM.flatten_model.is_bipartite(edges)

	

	
fastISM.flatten_model.is_consistent(edges, inbound_edges)

	

	
fastISM.flatten_model.is_input_layer(layer)

	Checks if layer is an input layer

	Parameters

	layer (tf.keras.layers) – A Keras layer

	Returns

	True if layer is input layer, else False

	Return type

	bool

	
fastISM.flatten_model.list_replace(l, old, new)

	

	
fastISM.flatten_model.node_is_layer(node_name)

	

	
fastISM.flatten_model.strip_subgraph_names(name, subgraph_names)

	subgraph_name1/subgraph_name2/layer/name -> layer/name

	
fastISM.flatten_model.viz_graph(nodes, edges, outpath)

	

 Changelog

Changelog

Unreleased [https://github.com/kundajelab/fastISM/compare/v0.5.0...HEAD]

0.5.0 [https://github.com/kundajelab/fastISM/compare/v0.4.0...v0.5.0] - 2022-02-08

Added

	Cropping1D Support

	User specified stop layers (undocumented)

	Support for MultiHeadAttention layers

Changed

	Refinements to segmenting

	Segment starting with see-through layers followed by Conv1Ds with valid padding are kept in one segment

	Layers are duplicated with from_config and get_config

	Generalized pooling layers and added ability to add custom pooling layers

Fixed

	Runs for batch size 1

	Multi-input layers that had the same input twice (e.g. Add()([x,x])) would not run, fixed this

	Support for newer versions of tensorflow which changed sub-models class from keras to tf.keras (in flatten_model)

	Stop layers were traversed redundantly

0.4.0 [https://github.com/kundajelab/fastISM/compare/v0.3.0...v0.4.0] - 2020-09-16

Added

	Sequences for benchmarking in notebooks dir and a notebook to process the sequence

	Benchmarking notebooks

	Notebook to time Basset conv and fc separately

	Ability to specify custom mutations

	For each mutation, models only run on input sequences for which character is different from mutation. As a result, each batch usually has a different size. This is slow for the first few batches as it entails a one-time cost.

	Lots of documentation and a logo!

Changed

	Models updated:

	Activation added to Basset

	Num output for Basset and Factorized Basset

	For BPNet, only one channel output and one counts instead of two

Fixed

	FastISM object would keep intermediate outputs of a batch even after it was used, as a result it would occupy extra memory. Get rid of such objects now through a cleanup() function. This has stopped GPU Resource errors that popped up after running a few batches

0.3.0 [https://github.com/kundajelab/fastISM/compare/v0.2.0...v0.3.0] - 2020-08-24

Added

	Support for multi-input models where alternate input does not merge with primary sequence input before a stop layer.

	Support for layers that dependend on exact order of inputs, e.g. Subtract and Concat.

0.2.0 [https://github.com/kundajelab/fastISM/compare/v0.1.3...v0.2.0] - 2020-08-22

Added

	Support for recursively defined networks with 3 test cases

	This Changelog file.

Changed

	BPNet test cases atol changed to 1e-5 so they pass deterministically

0.1.3 [https://github.com/kundajelab/fastISM/releases/tag/v0.1.3] - 2020-08-21

Added

	First PyPI release and tagged version

	Tested and working on non-recursively defined single-input, single and multi-output architectures

	Tested and working on arcitectures with skip connections

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/].

 Citation

Citation

fastISM: Performant in-silico saturation mutagenesis for convolutional neural networks; Surag Nair, Avanti Shrikumar, Anshul Kundaje (Bioinformatics 2022)
http://doi.org/10.1093/bioinformatics/btac135

 Python Module Index

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fastISM	

 	
 	
 fastISM.change_range	

 	
 	
 fastISM.fast_ism	

 	
 	
 fastISM.fast_ism_utils	

 	
 	
 fastISM.flatten_model	

 	
 	
 fastISM.ism_base	

 Index

Index

 B
 | C
 | F
 | G
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

B

 	
 	backward() (fastISM.change_range.ChangeRangesBase method)

 	(fastISM.change_range.Conv1DChangeRanges method)

 	(fastISM.change_range.Cropping1DChangeRanges method)

 	(fastISM.change_range.Pooling1DChangeRanges method)

C

 	
 	call() (fastISM.fast_ism_utils.SliceAssign method)

 	ChangeRangesBase (class in fastISM.change_range)

 	cleanup() (fastISM.fast_ism.FastISM method)

 	(fastISM.ism_base.NaiveISM method)

 	
 	compute_segment_change_ranges() (in module fastISM.fast_ism_utils)

 	Conv1DChangeRanges (class in fastISM.change_range)

 	Cropping1DChangeRanges (class in fastISM.change_range)

F

 	
 	FastISM (class in fastISM.fast_ism)

 	fastISM.change_range (module)

 	fastISM.fast_ism (module)

 	fastISM.fast_ism_utils (module)

 	fastISM.flatten_model (module)

 	
 	fastISM.ism_base (module)

 	forward() (fastISM.change_range.ChangeRangesBase method)

 	(fastISM.change_range.Conv1DChangeRanges method)

 	(fastISM.change_range.Cropping1DChangeRanges method)

 	(fastISM.change_range.Pooling1DChangeRanges method)

 	forward_compose() (fastISM.change_range.ChangeRangesBase static method)

G

 	
 	generate_fast_ism_model() (in module fastISM.fast_ism_utils)

 	generate_fast_ism_subgraph() (in module fastISM.fast_ism_utils)

 	generate_interme